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ABSTRACT

Accurate prediction of protein-ligand binding affinities remains a cornerstone
problem in drug discovery. While binding affinity is inherently dictated by the
3D structure and dynamics of protein-ligand complexes, current deep learning
approaches are limited by the lack of high-quality experimental structures with
annotated binding affinities. To address this limitation, we introduce the Struc-
turally Augmented IC50 Repository (SAIR), the largest publicly available dataset
of protein-ligand 3D structures with associated activity data. The dataset com-
prises 5, 244, 285 structures across 1, 048, 857 unique protein-ligand systems, cu-
rated from the ChEMBL and BindingDB databases, which were then computa-
tionally folded using the Boltz-1x model. We provide a comprehensive charac-
terization of the dataset, including distributional statistics of proteins and ligands,
and evaluate the structural fidelity of the folded complexes using PoseBusters.
Our analysis reveals that approximately 3% of structures exhibit physical anoma-
lies, predominantly related to internal energy violations. As an initial demon-
stration, we benchmark several binding affinity prediction methods, including
empirical scoring functions (Vina, Vinardo), a 3D convolutional neural network
(Onionnet-2), and a graph neural network (AEV-PLIG). While machine learning-
based models consistently outperform traditional scoring function methods, nei-
ther exhibit a high correlation with ground truth affinities, highlighting the need
for models specifically fine-tuned to synthetic structure distributions. This work
provides a foundation for developing and evaluating next-generation structure and
binding-affinity prediction models and offers insights into the structural and phys-
ical underpinnings of protein-ligand interactions. The dataset can be found at
https://www.sandboxaq.com/sair.

1 INTRODUCTION

Understanding the interaction between proteins and ligands is a fundamental problem in chemical
biology and drug discovery. The binding affinity of a ligand to its target protein, as well as to off-
target proteins, is a critical parameter when it comes to designing small-molecule drugs. In principle,
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the binding affinity can be derived from the structural information of the protein-ligand complex, as
the three-dimensional structure of the complex describes most of the interaction between the protein
and the ligand. In practice, however, there are limitations to predicting affinity from structural data,
both from an experimental and a computational perspective. From an experimental perspective,
despite tremendous advances in the field, there are significant challenges generating experimental
structures for some proteins, limiting the accessibility and resolution of some structures. Addition-
ally, in spite of significant advancement in higher throughput methods, the effort needed to produce
experimental structural information makes it difficult to efficiently integrate it into the design cy-
cle. From the computational perspective, despite their tremendous utility, traditional methods used
to calculate binding affinities like MM/GBSA (Wang et al., 2019) and free energy methods (e.g.
Cournia et al., 2017; Crivelli-Decker et al., 2024; York, 2023) rely on the use of force fields which
limit their accuracy, while quantum mechanical based methods remain prohibitively expensive. Ad-
ditionally, traditional methods strongly depend on the quality of the protein-ligand complex, with
small inaccuracies producing large errors in the estimation of binding affinities.

To address these limitations, one approach is to learn surrogate functions that approximate bind-
ing affinity directly from protein sequences and ligand SMILES representations (e.g., Öztürk et al.,
2019; Jiang et al., 2022; Limbu & Dakshanamurthy, 2022). However, binding affinity is fundamen-
tally determined by the three-dimensional (3D) structure of the protein–ligand complex, which is
not fully captured by primary sequence information alone. As a result, deep learning methods that
operate on 3D structural inputs—whether using convolutional neural networks (e.g., Jiménez et al.,
2018; Zheng et al., 2019; Wang et al., 2021) or graph neural networks (e.g., Son & Kim, 2021)—are
generally more accurate and robust.

An important issue for scaling deep learning-based affinity prediction methods utilizing 3D struc-
tures is the availability of high-quality crystal structure data and accurate binding affinity values.
The number of known protein-ligand structures (both from cryo-EM or from X-ray crystallography)
that are paired with measured binding affinity values is fairly limited considering the number of
possible combinations that may exist in nature (Askr et al., 2023; Libouban et al., 2023; Wang,
2024; Zeng et al., 2024). Moreover, surrogate models trained on these data are heavily impacted by
the quality of crystal structures and accuracy of measured binding affinities used. There has been
substantial progress in recent years at improving the coverage of these datasets, however existing
datasets still lack sufficient coverage in both protein and ligand space.

One possible solution to address the lack of data coverage, is to augment existing datasets with
high-confidence computationally folded structures, through a process termed distillation. This ap-
proach is frequently used in the field and has been applied to a number of recent works such as in
AlphaFold (Jumper et al., 2021; Abramson et al., 2024), Chai-1 (Chai Discovery, 2024), or Neu-
ralPlexer (Qiao et al., 2024). Other groups have attempted to leverage experimentally determined
strucutres by leveraging the PDB and linking them with other external resources like BindingDB.
For example, the PLINDER dataset (Durairaj et al., 2024), utilized this approach to curate nearly
450k protein-ligand pairs for both apo and holo structures. However, experimentally derived affinity

Figure 1: Three example protein-ligand complexes from our SAIR dataset. Protein chains are color
coded by pLDDT score with blue, yellow, and red regions corresponding to high, medium, and low
confidence regions. From left to right the first complex corresponds to sample 4702 with Uniprot ID
C7C422 and Ligand InchiKey BFOYHAUOQCJINB-UHFFFAOYSA-N, the second complex cor-
responds to sample 501640 with Uniprot ID P28062 and Ligand InchiKey ODIWGDQSSAWSIL-
GKWCIWIWSA-N, and the third complex corresponds to sample 253438 with Uniprot ID P07858
and Ligand InchiKey SQIHYRIDUCIHLT-HKUYNNGSSA-N.
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values were only included if available from BindingDB and only represents a smaller fraction of the
full dataset. In another example, the CrossDocked dataset Francoeur et al. (2020) used experimen-
tally solved bound structures and docked bound ligands to other similar binding pockets. However,
this dataset doesn’t include experimentally verified affinity values and only includes poses with bi-
nary classification labels for use in downstream machine learning tasks. Thus, there is a clear need
to further enhance the availability of protein-ligand pairs with bioactivity and binding affinity data
to enable the training of large-scale supervised machine learning tasks.

In this work, we present the Structurally Augmented IC50 Repository (SAIR): the largest publicly
available dataset of protein-ligand 3D structures 1, with annotated potencies (some example struc-
tures are shown in Fig. 1). Our data consists of 1, 048, 857 protein-ligand complexes, which were
obtained from the ChEMBL (Gaulton et al., 2012; Zdrazil et al., 2024) and BindingDB (Liu et al.,
2007; 2025) datasets. The data were preprocessed and filtered as described in §2, and the pro-
tein–ligand complex structures were folded using the Boltz-1x model (Wohlwend et al., 2024), a
publicly available implementation inspired by AlphaFold 3. Results derived from our dataset are
presented in §3, including the performance of two binding affinity prediction models: one trained
on protein sequence and SMILES representations, and another trained on 3D structural data. We
conclude with a summary of key findings in §4.

Our main contribution is the public release of the SAIR dataset. The paper describes how the
dataset was obtained, and presents some analyses using the data. The data is available at https:
//www.sandboxaq.com/sair. Appendix §A, goes into more detail about the available data.

2 DATASET CONSTRUCTION

Table 1: Comparison of Protein-Ligand Binding Databases

Database Protein-Ligand Pairs Structural Data Type Potency Data
CrossDocked 22.5m Synthetic + Experimental No
PDBbind+ (CITE) 27,385 Experimental Yes
Binding MOAD 41,409 Synthetic Experimental Yes (15,223 entries)
PLINDER 449,383 Experimental Yes (from BindingDB)
DockGen 41,791 Synthetic No
SAIR (This Work) 1,048,857 Synthetic Yes

2.1 DATASET CURATION

Bioactivity data were obtained from the ChEMBL35 release (Gaulton et al., 2012) and BindingDB
(1Q2025) (Liu et al., 2007), and subsequently curated using a minimal set of filters designed to
retain a large volume of high-quality data. The specific filters are described below.

ChEMBL35:

1. Removed entries missing ligand SMILES or pchembl values.

2. Removed entries which: did not have a UniProt ID for the protein target, referenced multi-
ple protein targets, or referenced a protein variant.

3. Removed entries with a data validity comment1.

4. Removed entries where standard relation was < or >. This step ensures that any measured
values obtained are within the limit of detection for the assay.

5. Only included assays that were flagged by ChEMBL as measuring binding (e.g., Ki, IC50,
Kd).

6. Removed measurements outside of a reasonable biochemical assay dynamic range (1 pM <
x < 100 µM).

1The data validity comment was introduced in ChEMBL15 and includes information about the quality of
the entry and to allow users to make an informed decision on whether to include that value in their analyses
(https://chembl.blogspot.com/2020/10/data-checks.html).
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BindingDB:

1. Removed entries missing molecule SMILES or IC50 values.
2. Removed entries without a UniProt ID for the protein target or referenced multiple protein

targets.
3. Removed entries where reported IC50 values contained inequalities (i.e. < or >). This step

ensures that any measured values obtained are within the limit of detection for the assay.
4. Remove measurements outside of a reasonable biochemical assay dynamic range (1 pM <

x < 100 µM).

After initial curation, data from both sources were merged into a single table. While this curation
strategy can introduce variability in IC50 values by combining data from different assays Landrum
& Riniker (2024), this dataset is still fully compatible with the maximal curation strategy outlined
in Landrum & Riniker (2024) for data points from ChEMBL. Because BindingDB does not perform
curation at the level of specific assays, the maximal curation strategy is not compatible with that
source. For protein-ligand complexes that appear in both ChEMBL and BindingDB, we keep the
information from both datasets.

All bio-activity values were converted to pIC50 units (− log10). SMILES strings for the ligand
molecular structures were standardized by the removal of salts, protonation at neutral pH (where
possible), and canonicalization using RDkit. Note that the choice of neutral pH for the ligand pro-
tonation is immaterial for the subsequent computational prediction of the protein-ligand structures,
as current cofolding models do not predict the positions of hydrogen atoms.

A coarse ligand library filter was applied to exclude likely false positives/false negatives by remov-
ing PAINS and molecules with molecular weights exceeding 1250 Da. Protein-ligand complexes
containing proteins with more than 2000 amino acid residues were excluded, in order to increase
the probability of successful prediction by the cofolding model on current GPU hardware. Next,
duplicate entries were removed based on UniProt accession and canonical SMILES.

The amino acid sequence for each protein was obtained from its UniProt entry using the accession
number provided in the ChEMBL or BindingDB dataset. Note that this canonical sequence from
UniProt may differ from the one used in the original bioactivity assay. For instance, the experimental
protein may have been a truncated construct, a mutant, or a specific quaternary structure (e.g., a
homodimer), whereas our analysis used the monomeric sequence from the database.

Finally, to avoid data leakage when using this dataset to train or evaluate models that use structural
data from the PDB for training, protein-ligand systems that already have experimentally-solved
structures in the PDB were removed. The existence of a corresponding structure in the PDB was
determined by finding the Chemical Component Dictionary (CCD) identifier of the ligand (by first
computing its InChIKeyHeller et al. (2015) using RDKit) and looking for matches to this (Uniprot
ID, CCD ID) pair in the PDB. This search utilized the RCSB GraphQL search APIrcs, and the PDBe
REST API provided by EMBL-EBISIF.

This results in 1, 048, 857 complexes, with 936, 702 from ChEMBL and 613, 597 from BindingDB
(see Table 2). Note the number of complexes from each source adds up to more than the total
number, because of complexes that appear in both sources. For structure generation, duplicated
complexes were only folded once. The distribution of pIC50 values is shown in Fig. 2.

2.2 STRUCTURE PREDICTION

We used the Boltz-1x folding model to generate 3D structures for all protein-ligand complexes
described in §2. Boltz-1 is a publicly available implementation of AlphaFold 32. Additionally,
Boltz-1x extends this model by introducing a guiding potential to the diffusion process to prevent
clashes, resulting in more physically realistic binding poses. Due to the lack of quaternary structure
information, all complexes were treated as monomeric assemblies. We generated five structure
samples per complex, as this represents the maximum number we can compute on a single GPU
for the longest protein sequence in the dataset (see §4 below for more details). While it is common

2There are some minor changes between AlphaFold 3 and Boltz-1, such as the strategy used for Multiple
Sequence Alignment (MSA) subsampling.
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Figure 2: Histogram showing the distribution of pIC50 values stratified by data source (ChEMBL
and BindingDB) and assay type (biochemical, cell-based, and unknown). Note that, as shown in Ta-
ble 2, the assay type could not be inferred for the majority of complexes based on the curated assay
descriptions. As a result, the bottom panels include only those complexes with known assays. For
all histograms except the first one, we also plot the overall distribution, in grey.

practice to increase sample diversity by varying random seeds across multiple runs, we did not apply
this technique due to resource constraints3.

The Boltz-1x model was run using three recycling steps and 200 sampling steps (any other settings
are the defaults as of the boltz-1x release). Note that, as all these systems are monomeric, the pairing
strategy is irrelevant.

Multiple sequence alignments (MSAs) for input to the model were generated using the MMseqs2
tool (Steinegger, 2017) (via the ColabFold Mirdita et al. (2022) project). This used the UniRef30
sequence database version 2302 and the ColabFoldDB metagenomic sequence database version
202108.

3 RESULTS

3.1 DATA STATISTICS

3.1.1 PROTEINS

The 1, 048, 857 protein-ligand systems in the dataset comprise 5, 149 unique protein sequences. Of
these 5, 149 proteins present in our dataset, 2, 150 are believed to have no structures deposited in
the PDB. The distribution of sequence lengths is shown in Fig. 3. Most sequences fall within the
300-500 amino acid range. Beyond 500 residues, the frequency decreases steadily, with very long
sequences (e.g., > 1500 amino acids) appearing only rarely.

3Further, Boltz-1’s MSA subsampling is deterministic with respect to the random seed, unlike other cofold-
ing models such as AlphaFold3 and Chai-1 (Chai Discovery, 2024)), where seed variation is a primary source
of stochasticity. As a result, we do not expect significant diversity gains from seed variation in Boltz-1x.
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Table 2: Data distribution by source and assay. Note that the total number between both assays is
larger than the number of generated structures. That is because of protein-ligand pairs that appear in
both datasets

Assay Source
BindingDB ChEMBL

biochem 2,293 416,331
cell 0 183,286
homogenate 0 13,980
na 934,409 0

Total 936,702 613,597

Figure 3: Distribution of protein sequence lengths across all unique entries in the dataset.

Sequence clustering with MMseqs2 (Steinegger, 2017) using reasonable values for the minimum
sequence identity and minimum coverage (MMseqs2 flags --min-seq-id and -c, respectively)
revealed the presence of a large number of singleton clusters. For example, setting --min-seq-id
and -c to [0.8, 0.8], [0.5, 0.7], and [0.3, 0.2] resulted in 3793, 2818, and 1862 clusters, respectively.

Proteins were assigned to a family by using metadata provided by the UniProt database. We first
classified them into enzymes or non-enzymes by looking at the presence of an enzymatic activity
number (EC number). Enzymes were further subdivided into kinases (EC = 2.7.x), phosphatases
(EC = 3.1.x) and other enzymes. Non-enzymes were subdivided by looking at their gene ontology
codes (GO code). For example, the presence of GO = 0004879 implies that the protein is a nuclear
receptor.

The distribution of protein families accross different assays is shown in Fig. 4. We see that the
biochemical assay has a larger proportion of phosphatases, kinases and enzymes, while the cell
assay has more nuclear receptors and GPCRs. There is also a larger number of proteins in the cell
assay, for which we could not parse family information.
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Figure 4: Distribution of protein families across all unique entries in the dataset. We could not parse
the protein family information for a fraction of the proteins, which are shown under ‘other’.

3.1.2 LIGANDS

We used RDKit (Landrum et al., 2025) to compute a range of chemical descriptors, as summarized
in Table 3. The values capture the statistics of the unique ligands in the dataset.

It is worth noting that we did not perform any filtering on the dataset on the basis of things like
”drug-likeness” of the ligands, for example filtering samples with ligands below a certain molecular
weight. This is to avoid losing useful and chemically-meaningful data points of biologically-relevant
species, such as ionic cofactors or small organic fragments that can teach a model protein-small-
molecule interaction chemistry. It is our expectation that users will choose to filter samples based
on ligand characteristics according to their use case.

3.2 POSEBUSTERS

We evaluated all generated protein-ligand structures using PoseBusters (Buttenschoen et al., 2024),
with results summarized in Table 4. Overall, Boltz-1x performs well in generating physically valid
structures, with only approximately 3% of structures failing any PoseBusters check. This number is
consistent with the performance reported in Wohlwend et al. (2024). Notably, only 0.53% of protein-
ligand complexes had all five generated structures fail. Focusing on different protein families, we
find that the model has lower failure rates for kinases, and phosphatases; and fails more often for
GPCRs. One interesting case are nuclear receptors, where the overall failure rate is low, but there
is a relatively large number of complexes, for which all structures failed (more than for any other
family) indicating that some of the nuclear receptor complexes are particularly hard to fold.

For the assemblies that failed PoseBusters validation, we present a more fine-grained analysis of
individual test outcomes in Fig. 5. Across all assay types4 the most frequent source of failure is the
internal energy check, which accounts for more than half of all PoseBusters failures. Other common
failure modes include the number of bonds, abnormal bond lengths, and ligands that could not be
loaded by RDKit.

4We do not show results for the homogenate assay, as there are not enough structures, compared with the
rest.
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Table 3: Chemical descriptors across the dataset (aggregation of unique ligand entries).

Descriptor Min Max Mean Stddev.
Molecular weight 17.0 1.25e+03 4.46e+02 1.25e+02
Heavy atom count 1.00 94.0 31.7 8.88
Hetero atom count 0.00 46.0 8.55 3.31
H-bond acceptor count 0.00 36.0 5.89 2.33
H-bond donor count 0.00 25.0 1.89 1.58
Topological polar surface area 0.00 6.40e+02 92.9 43.3
Wildman-Crippen LogP -13.1 19.2 3.80 1.72
QED (Drug-likeness) 0.00684 0.948 0.498 0.204
Rotatable bond count 0.00 53.0 6.11 3.69
Fraction Csp3 0.00 1.00 0.321 0.177
Aliphatic carbocycle count 0.00 19.0 0.328 0.720
Aliphatic heterocycle count 0.00 20.0 0.754 0.828
Aliphatic rings count 0.00 21.0 1.08 1.08
Aromatic carbocycle count 0.00 20.0 1.55 0.935
Aromatic heterocycles count 0.00 11.0 1.45 1.10
Aromatic ring count 0.00 20.0 3.00 1.16
Bridgehead atom count 0.00 20.0 0.110 0.598
Spiro atom count 0.00 6.00 0.0392 0.210

Table 4: Summary of PoseBusters results by family

Family Metric Structures Assemblies
Overall Analysis Total failed 166,241 5,526

Total 5,244,285 1,048,857
Percentage failed 3.17% 0.53%

Enzyme Total failed 59,169 1,944
Total 1,699,025 339,805
Percentage failed 3.48% 0.57%

Kinase Total failed 34,160 1,639
Total 1,531,115 306,223
Percentage failed 2.23% 0.54%

Other Total failed 46,248 1,200
Total 1,170,445 234,089
Percentage failed 3.95% 0.51%

Phosphatase Total failed 12,181 329
Total 418,895 83,779
Percentage failed 2.91% 0.39%

GPCR Total failed 10,304 188
Total 267,650 53,530
Percentage failed 3.85% 0.35%

Nuclear Receptor Total failed 4,179 226
Total 157,155 31,431
Percentage failed 2.66% 0.72%

3.3 BOLTZ CONFIDENCE METRICS

Given that we have access to experimental binding potencies for the corresponding complexes, we
assessed whether Boltz-1x’s confidence metrics correlate with binding affinity. Prior work has
demonstrated that AlphaFold confidence scores correlate with binding affinity in protein–protein
interactions (Zambaldi et al., 2024) (PPIs). Here, we explore whether similar correlations exist in

8



Figure 5: Failure rate for each PoseBusters check, defined as the number of structures failing a given
check divided by the total number of failed structures. Bar colors indicate assay type. The first entry
in the x-axis corresponds to cases where RDKit failed to load the ligand.

the context of protein–ligand interactions. Results are shown in Fig. 6.Focusing on the blue bars
(Spearman correlation averaged across all assay types), we observe a significant correlation be-
tween certain confidence metrics, particularly those involving the protein-ligand interface —namely
iPTM, complex iPDE, and complex iPLDDT—and experimental potency. These findings suggest
that Boltz-1x’s structural confidence metrics provide some predictive signal for protein–ligand bind-
ing affinity. Notably, the strength of the correlation varies by assay type: it is highest for biochemical
assays and weakest for cell assays. We hypothesize that this is caused by the great specificity and
accuracy of biochemical assays, while cellular and homogenate assays may introduce additional
confounding factors such as off-target binding, permeability, and intracellular dynamics. To further
probe protein–ligand interaction quality, we introduce a new metric — interaction PTM — defined
as the average of the off-diagonal values in the pair chains ptm confidence head. This metric
captures the confidence of the protein with respect to the ligand, and vice versa, and is analogous
to the “interaction PAE” described in Zambaldi et al. (2024). We find that interaction PTM exhibits
strong correlation with binding affinity (rs = 0.25), ranking second only to iPTM (rs = 0.27) in
predictive power across our dataset.

We can furthermore look at the similarity between generated protein chains and protein chains from
the training dataset. We find a high degree of correlation (Spearman correlation of 0.47) between
the global PTM confidence and the highest TM-score (normalized by query length) to structures in
the training set. This metric is independent of the ligand, which partly explains the poor correlation
to the binding affinity. It is better suited for evaluating the global shape of the protein.

3.4 BINDING AFFINITY MODELS

We use the SAIR dataset to benchmark the performance of several binding affinity prediction
models. The combination of cofolding-generated structures with structure-based affinity predic-
tion represents a promising and increasingly adopted approach in the scientific community. By
providing high-throughput structural models paired with experimentally observed IC50 values, the
SAIR dataset enables rigorous evaluation of this emerging class of predictive methods.
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Figure 6: Comparison of the Spearman correlation rs between different Boltz-1x confidence metrics,
and the experimental IC50 activity, by assay type. The signs shown in the title of each panel indicate
the expected direction of correlation: negative for PDE and iPDE (as they represent distances), and
positive for all other metrics.

The field of protein–ligand binding affinity prediction is supported by a vast and diverse body of
literature, and a comprehensive comparison of all available methods is beyond the scope of this
work. Instead, we focus on three representative and methodologically distinct approaches to binding
affinity prediction:

• Empirical scoring functions: We employ two different traditional empirical scoring
functions: AutoDock Vina (henceforth referred to as Vina) (Trott & Olson, 2010) and
Vinardo (Quiroga & Villarreal, 2016), both calculated using the GNINA library (McNutt
et al., 2021). We additionally evaluate first minimizing the ligand pose using the Vina scor-
ing function before scoring the resulting structure, again using Vina (this is referred to as
”Vina minimized”).

• Convolutional neural network (CNN): As a first method of structure-based machine
learning affinity prediction, we employ a three-dimensional CNN, and represent the input
by projecting it into 3D voxels. There are various available 3D CNN methods for affinity
prediction, but we use Onionnet-2 (Wang et al., 2021), one of the state-of-the-art methods.

• Graph neural network (GNN): As an alternative structure-based machine learning
method, we consider a GNN. GNNs are, theoretically, better suited for the task of affinity
prediction, as protein-ligand systems are easily represented as graphs. However, regression
from graphs is generally a harder task than regression using voxels, as graph convolutions
are non-trivial (Zhang et al., 2019). As our GNN, we use the AEV-PLIG model (Warren
et al., 2024; Valsson et al., 2025), which recently showed state-of-the-art performance in
structure-based binding affinity prediction.
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Figure 7: The various metrics we use to compare predicted and experimental binding affinity, for
each of the binding affinity prediction methods studied in the paper, and for each of the assays.
The shaded lines show results when using only the structures for which Boltz-1x predicted a high
confidence.

In all cases (with the exception of the ”Vina minimized” approach, as explained above), the given
affinity prediction tool is evaluated on the predicted three-dimensional protein-ligand structure as-is.

There are many other methods that could be used for benchmarking binding affinity prediction. For
example, the recently developed Boltz-25 accomplishes accurate binding affinity prediction via re-
gression from intermediate embeddings. However, it is trained on similar data to what we present
here, therefore it was not used for comparison. On the side of physics-based methods, Free Energy
Perturbation (FEP) methods are considered the most accurate, however they are very computation-
ally expensive, making it difficult to use them in a dataset of millions of structures like the one
presented in this work.

We use four metrics to compare the performance of the various binding affinity methods:

5while no pre-print is available in any official pre-print server at the point of writing, the Boltz-2 pa-
per can be found in https://cdn.prod.website-files.com/68404fd075dba49e58331ad9/
6842ee1285b9af247ac5a122_boltz2.pdf
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• Spearman Correlation: The Spearman correlation between the predicted and experimen-
tal binding affinity, defined as:

rs = 1− 6
∑

d2i
n(n2 − 1)

(1)

where di is the difference between the ranks of the predicted and experimental binding
affinities, and n is the number of samples.

• Pearson Correlation: The Pearson correlation between the predicted and experimental
binding affinity, defined as:

rp =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
√∑

(yi − ȳ)2
(2)

where xi and yi are the predicted and experimental binding affinities, respectively, and x̄
and ȳ are the means of the predicted and experimental binding affinities, respectively.

• Kendall’s Tau: Kendall’s Tau is a measure of the ordinal association between two quanti-
ties, defined as:

τ =
(nc − nd)
1
2n(n− 1)

(3)

where nc is the number of concordant pairs, and nd is the number of discordant pairs, and
n is the number of samples.

• Area Under the Curve (AUC): The AUC is a measure of the ability of a model to distin-
guish between positive and negative samples. It is defined as the area under the Receiver
Operating Characteristic (ROC) curve, which is a plot of the true positive rate against the
false positive rate. To calculate the AUC, we first need to define a threshold for the pre-
dicted binding affinity, and then compute the true positive rate (TPR) and false positive rate
(FPR) for that threshold. We use a threshold of 100µM , which is a common threshold for
binding affinity prediction.

We restrict our evaluation to structures derived from ChEMBL, as BindingDB includes experimental
protein–ligand complexes that were used in the training of AEV-PLIG. Although the structures
in our dataset are synthetically generated and not identical to those used in training, we exclude
BindingDB entries to minimize the risk of data leakage and to ensure a fair comparison. As an
additional consideration, AEV-PLIG was trained using the BindingNet database Li et al. (2024),
which contains synthetically generated structure-activity relationship data derived from ChEMBL.
This could account for AEV-PLIG’s enhanced performance. Nevertheless, it should be noted that
the BindingNet training set represents a minor portion of the overall SAIR database (≤5%), and the
structures are likely distinct from those in the Boltz computed set.

We present the results of the model comparison in Fig. 7. Across all assay types, the GNN method
achieves the highest performance, followed by the CNN method, with the empirical scoring func-
tions performing the worst. However, none of the methods achieve a very high correlation, with
Spearman correlations comparable to the ones achieved by some of the interface confidence met-
rics (even though those were not specifically tuned for binding affinity prediction), such as iPTM,
also shown the figure. The shaded bars in the figure show the results when we only keep structures
for which Boltz-1x predicts a high confidence (> 0.8). We find that keeping only these structures
improves performance of almost all models, as the structures are more likely to be correct.

It is important to note that both the GNN and CNN models were originally trained on experimental
structures, and our evaluation is conducted on synthetic structures generated via cofolding. Fine-
tuning these models on a subset of the synthetic dataset would likely improve their performance and
better align them with the structural distribution seen at inference time.

3.5 POCKET DIVERSITY

We can use our model to gain insight into the effect that changing the input ligand has in the gen-
erated protein conformation. If we give Boltz-1x sufficiently distinct ligands, is the model able to
detect different appropriate binding sites, or will it re-use the pockets it has seen during training?
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To address this, we need to define a pocket. First, we define pocket residue as every residue that has
a non-hydrogen atom within 6Å to the closest ligand atom, a cutoff commonly adopted in the field.
The set of pocket residues defines a pocket, and two pockets are considered similar if

|p1 ∩ p2|
min(|p1|, |p2|)

≥ threshold, (4)

where we defined the threshold to be 0.8. That allows us to cluster the detected pockets per protein
into groups, such that no group shares a similar pocket.

Fig. 8 shows both the diversity in pockets over the five generated structures per protein/ligand com-
plex (left panel), and the diversity for a given protein as we change ligands (right). AlphaFold3-like
models are known to generate similar conformations for different diffusion samples, which we also
find when looking at the pocket diversity, with most complexes generating ligands in the same pocket
for all five generated samples.

However when looking at a protein chain, with different ligands, we find a significant fraction of
systems with a variable set of pockets. The most extreme example of this is protein P10636, where
we found well over a thousand different potential binding sites for 345 different ligands, two of
which are visualized in figure 9.

This shows a potential reason for the fat tail in the number of distinct pockets per protein. When
Boltz-1x is uncertain about the structure or if the protein is very flexible, then we find a very diverse
set of protein conformations. The pocket-residues will similarly change a lot, and there is no well
defined binding site.

Figure 8: Pocket diversity for different samples and different ligands. Pocket similarity was deter-
mined using Eq. (4). Left: The diversity of pockets in the five generated structures per protein/ligand
complex. Right: The diversity of pockets for different proteins.

We can also study pocket similarity to the training set. Fig. 10 shows the result of performing a
similarity search of all generated structures against the Boltz-1x training data, the pocket-LDDT
score, as defined in Durairaj et al. (2024). The pocket-LDDT is defined by structurally aligning
predicted structures to ground truth structures, and calculating the average LDDT over the backbone
carbon atoms in the aligned pocket residues. In our case, this score is not a measure of correctness,
but more a measure of similarity to the training dataset.

We find no correlation between the pocket-LDDT and the interface confidence (Spearman corre-
lation of -0.02), but we do find most pockets to be highly similar to the training data. We have
previously seen that Boltz is able to generate multiple distinct binding poses, which together implies
that Boltz successfully places ligand atoms in plausible looking pockets.
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Figure 9: Diverse binding sites in protein P10636.

Figure 10: The distribution of pocket LDDT’s calculated, comparing the generated structures to the
training dataset.

4 CONCLUSIONS

In this work, we introduce the Structurally Augmented IC50 Repository (SAIR), a large-scale
dataset of protein–ligand 3D structures paired with annotated binding affinities. Comprising
5, 244, 285 synthetically-generated structures representing 1, 048, 857 protein-ligand complexes,
each annotated with experimentally-determined potency, the dataset is designed to significantly ex-
pand the volume of data available for training and evaluating structure-based deep learning models
in drug discovery.

We rigorously evaluated the quality of the generated structures using PoseBusters and observed a low
overall failure rate of approximately 3%. To assess the utility of the dataset for predictive modeling,
we benchmarked several structure-based binding affinity prediction methods. Graph neural networks
performed best, followed by convolutional neural networks and empirical scoring function methods.
However, all models achieved only modest correlations, comparable to those obtained from the
folding model’s interface confidence metrics. This suggests that models trained on experimental
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structures may not generalize well to synthetic data, highlighting the potential need for fine-tuning
on generated complexes.

Looking ahead, this work opens several promising avenues for future research. We plan to evaluate
the performance of our binding affinity prediction algorithm AQFEP (Crivelli-Decker et al., 2024)
on the SAIR dataset, to directly compare its performance with the methods benchmarked in this
paper. We also aim to use SAIR to improve the performance of AQFEP. More broadly, fine-tuning
existing affinity prediction models—or developing new architectures specifically optimized for syn-
thetic protein–ligand complexes—could lead to significant gains in predictive accuracy. Beyond
affinity prediction, the dataset may also support self-distillation strategies for cofolding models, as
has been demonstrated in other data modalities.

Finally, SAIR represents a valuable resource for inverse design tasks, enabling generative ap-
proaches to create new ligands conditioned on a target protein—further expanding the possibilities
for structure-based drug discovery.
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Söding J. Steinegger, M. Mmseqs2 enables sensitive protein sequence searching for the analysis of
massive data sets. Nature Biotechnology, 35:1026–1028, 2017.

Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking with
a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry, 31(2):455–461, 2010.
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A IC50 DATASET STRUCTURE AND CONTENTS

This appendix provides a detailed description of the SAIR dataset, its file organization, and the
contents of its primary data files.
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A.1 DATASET MANIFEST

The IC50 dataset is organized into the following primary components:

• sair.parquet: This is the central dataframe of the dataset, containing all curated
IC50 data, associated original source metadata, results from PoseBusters structural valid-
ity checks, Boltz-1x prediction confidence measures, and other relevant metadata for each
protein-ligand complex.

• structures/: This directory contains all the predicted 3D structures generated by the
Boltz-1x co-folding model. For each unique protein-ligand complex, five distinct predicted
structures (referred to as ”models”) are provided. Each structure is stored as a .cif file,
named according to the convention sample <entry id> model <model>.cif.
Here, entry id corresponds to the entry id field in sair.parquet, and model
identifies the specific sample (0 through 4) from the co-folding model.

• prediction confidences/: This directory stores the raw .json confidence files
directly produced by the Boltz-1x model. The files follow the naming convention
confidence sample <entry id> model <model>.json, with entry id and
model consistent with the structure files. These files contain detailed confidence metrics
beyond those summarized in sair.parquet.

• prediction plddts/: This directory contains the raw .npz files for Predicted Lo-
cal Distance Difference Test (pLDDT) values, also output directly by the Boltz-1x model.
These files are named plddt <entry id> model <model>.npz, using the same
entry id and model identifiers. pLDDT values provide residue-level confidence esti-
mates for the predicted structures.

A.2 SAIR.PARQUET COLUMN DESCRIPTIONS

The sair.parquet file serves as the main tabular data source, consolidating key information
for each structure-potency pair.Table 5, Table 6, Table 7 and Table 8; describe each column in
sair.parquet, categorized for clarity.

Table 5: Description of Columns in sair.parquet: Identifiers and Inputs

Column Name Description
Identifiers
entry id Unique identifier for the protein-ligand complex, common

across all 5 predicted models for that complex.
index Unique identifier for the sample for this entry id, ranging

from 0 to 4 (included).

Inputs
protein UniProt accession ID of the protein target.
sequence Amino acid sequence of the protein.
SMILES Sanitized SMILES string of the ligand, used for structure

generation.
srcSMILES Original SMILES string of the ligand as provided in the raw

underlying data source (ChEMBL or BindingDB).
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Table 6: Description of Columns in sair.parquet: Potency Data and Metadata

Column Name Description
Potency Data and Metadata
source Origin of the bioactivity data: ’ChEMBL’ or ’BindingDB’.
description Description of the assay as provided by the source database.
potency Original potency value (e.g., IC50, Ki, Kd) from the under-

lying data source in its native units.
assay Type of assay (e.g., ’biochemical’, ’cell’, ’homogenate’, or

’na’ for not available).
pIC50 Potency value converted to negative-log10 units.
family The protein family classification for the target protein.

Table 7: Description of Columns in sair.parquet: Binding Affinity Predictions and Model
Confidence

Column Name Description
Binding Affinity Prediction Results
vinardo score Vinardo docking score for the predicted structure.
vina score Vina docking score for the predicted structure.
vina score min Vina docking score for the predicted structure, after mini-

mization.
aevplig score Predicted binding affinity score from the AEV-PLIG model.
onionnet score Predicted binding affinity score from the Onionnet-2 model.

Model Confidence Estimates
confidence score Overall confidence score produced by the Boltz-1x model

for the predicted structure.
chains ptm Predicted TM-score (PTM) specifically for the interaction

between different chains.
ptm Predicted TM-score, a global metric of structural accuracy.
iptm Interface Predicted TM-score, focusing on the accuracy of

the protein-ligand interface.
complex pde Complex Predicted Distance Error.
complex ipde Complex Interface Predicted Distance Error, focusing on er-

rors at the interface.
complex plddt Predicted Local Distance Difference Test (pLDDT) for the

complex.
complex iplddt Interface Predicted Local Distance Difference Test

(iPLDDT) for the complex.
interaction ptm Custom metric: Average of off-diagonal terms in the pair

chains PTM confidence head (protein-ligand interaction
confidence).
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Table 8: Description of Columns in sair.parquet: PoseBusters Results

Column Name Description
PoseBusters Results (Boolean flags indicate ’true’ for pass/success, ’false’ for

fail/issue, counts are integers)
mol pred loaded Indicates if the predicted ligand molecule could be success-

fully loaded by RDKit.
sanitization Indicates if the ligand molecule passed RDKit’s sanitization

checks.
inchi convertible Indicates if the ligand molecule is convertible to an InChI

string.
all atoms connected Indicates if all atoms in the ligand are connected (no discon-

nected fragments).
bond lengths Indicates if all ligand bond lengths are within expected

ranges.
bond angles Indicates if all ligand bond angles are within expected

ranges.
internal steric clash Indicates the presence of internal steric clashes within the

ligand.
aromatic ring flatness Indicates if aromatic rings in the ligand maintain expected

flatness.
double bond flatness Indicates if double bonds in the ligand maintain expected

flatness.
internal energy Indicates if the ligand’s internal energy is within reasonable

bounds (passed internal energy checks).
mol cond loaded Indicates if the conditioned (input) molecule could be

loaded.
passes valence checks Indicates if the ligand passes valence rules.
passes kekulization Indicates if the ligand can be successfully kekulized by RD-

Kit.
number clashes The count of clashes detected between the protein and lig-

and.
number short outlier bonds The count of bonds in the ligand that are unusually short.
number long outlier bonds The count of bonds in the ligand that are unusually long.
number valid bonds The count of valid bonds in the ligand.
number valid angles The count of valid bond angles in the ligand.
number valid noncov pairs The count of valid non-covalent pairs between protein and

ligand.
number aromatic rings The count of aromatic rings in the ligand.
number double bonds The count of double bonds in the ligand.
all passed Boolean flag indicating whether the structure passed all

PoseBusters checks.
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