
The Secret to Slashing Battery Test Times:  
Ultra-High Precision Coulometry (UHPC) and Machine Learning
High resolution raw data, unique cycle metrics – UHPC has valuable applications  
in development, quality, and machine learning lifetime prediction.



Progress Demands 
Urgency
For any company dependent on the battery supply 
chain, whether sourcing cells for electric vehicles, 
qualifying novel materials or standing-up giga-
factories, assessing cell quality, performance, and 
lifetime typically takes months to years of costly 
testing and is the single biggest bottleneck to energy 
storage innovation. But what if testing time was cut to 
a matter of weeks?  

Degradation mechanisms in chemistries such 
as lithium-ion are non-trivial, often occurring at 
minuscule rates of reaction, making them difficult 
– or impossible – to capture on traditional spec cell 
testing equipment, requiring long-test times before 
differences are evident.1,2 This is where techniques 
utilizing Ultra-High Precision Coulometry (UHPC) cell 
testing equipment excels, and data-driven predictive 
models thrive. 

Filling the gaps between traditional cell testing 
and complex and/or destructive analytical 
techniques, UHPC offers quantifiable insights into 
electrochemical mechanisms which are otherwise 
invisible using other techniques. This article explores 
how cell and auto OEMs, materials companies, 
and world-class institutions use UHPC to cut an 
order of magnitude off their testing times, and how 
high-fidelity UHPC data unlocks opportunities for 
predictive Machine Learning (ML) methods.  

UHPC: A Brief Background
UHPC was pioneered by Prof. Jeff Dahn in 2010 with the 
goal of accurately detecting low-rate electrochemical 
degradation in lithium-ion cells.1,2 Since then, UHPC 
techniques have been published in hundreds of journal 
articles spanning many applications and chemistries. 
Prof. Dahn has primarily employed low-rate constant 
current cycling to accurately mitigate kinetic effects 
during cycling and accurately measure cycle metrics 
to correlate to long-term performance. However, a 
boundless list of techniques can benefit from the 
use of UHPC across the development lifecycle, from 
fundamental material synthesis work to quality control 
in mass manufacturing. In 2013, following industry-wide 
demand for commercial cell testing equipment capable of 
UHPC techniques, Dr. Chris Burns and Dr. David Stevens, 
both mentored by Prof. Dahn, founded NOVONIX and 
commercialized the first market-ready UHPC cell testing 
product, which has evolved and spread across the 
battery industry over the last 12 years. 

UHPC equipment requires the highest precision and 
accuracy possible to allow researchers to develop 
methods to understand specific electrochemical 
degradation mechanisms during cell testing and measure 
metrics such as coulombic efficiency accurate to 10s 
of ppm. These mechanisms involve cell materials such 
as anodes, cathodes, electrolytes, etc., exchanging 
electrons at electrode surfaces in complex reactions. 
As degradation occurs, the associated processes which 
create charge balance in the cell while undergoing testing 
cause tiny differences in charge and discharge capacity. 

Figure 1: A NOVONIX UHPC cell testing system and temperature-controlled cell chambers. 2
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Charge Balance Mechanisms During Cell Testing

To create charge balance in a cell during testing, electrons and ions must be exchanged in every electrochemical reaction. These 
processes can add capacity during charge and subtract capacity during discharge, all contributing to the Coulombic Efficiency.
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Learn more about UHPC – Volta Foundation Battery Forum: Supercharging Battery Development with UHPC

Figure 2: Electrochemical degradation and charge balance mechanisms occurring during a charge cycle of a lithium-ion cell.

These processes are shown in Figure 2 and include, but are not limited to:

Transition metal dissolution

Mechanical self-discharge

Reversible redox shuttles

UHPC data can add a previously unattainable level of insight into cell chemistry and processes leading to end of 
life. These data therefore have important implications in the field of predictive analytics for batteries.
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https://www.youtube.com/watch?v=nHe1b8JEJmQ


Battery Failure Prediction

A variety of methods are used to predict the lifetime of 
cells under various conditions. These include:

Empirical aging models

Qualitative ranking

Physics-based models

Machine learning

Each method has advantages and disadvantages. For 
example: empirical models can be iterated quickly but 
do not generalize well, qualitative ranking provides 
a holistic picture of cell degradation but requires 
subject-matter expertise and excessive time, physics-
based models give detailed performance predictions 
but require extensive parametrization, and ML models 
provide broad predictions at low cost but typically 
require large training data sets. 

UHPC is historically reported in the literature adopting 
qualitative approaches, making head-to-head 
comparisons of similar systems such as different 

electrolyte additives in the same cells, comparisons of 
electrode materials, or direct measurements of specific 
mechanisms such as lithium plating or self-discharge.3-5 
However, the insights from UHPC can complement other 
modeling methods such as ML and may pave a way for 
more accurate prediction capabilities. 

There is often a strong correlation between early 
electrochemical signatures and eventual cell 
failure.6 ML models thrive on exactly the kind of high-
resolution UHPC data that captures those first, 
almost imperceptible signs of degradation. By training 
models on thousands of cells whose subtle early-
cycle fingerprints are paired with their eventual end-
of-life metrics, models can learn to map “day-one” 
electrochemical features to long-term performance 
outcomes. This ability to forecast lifetime after only a 
handful of cycles can shorten qualification and validation 
loops from months-years to days-weeks and turn UHPC 
into a launchpad for data-driven battery R&D.

Figure 3 depicts one method of how UHPC could be used for 
ML lifetime prediction. This method was employed during the 
case-study in this article.

Input
Short Term

UHPC Testing

• Electrochemical
Stability

• Material changes

• Capacity retention
• Kinetic response

• Short Term UHPC
• Short Term Aging

Long Term Cycle Aging

Machine
Learning Model

Model
Training

Months - YearsWeeks

Lifetime
Prediction

Short Term
Cycle Aging

Output

• Cycles to 80%
• Cycles to roll-over
• …..

Figure 3: Model diagram for lifetime prediction model using short term UHPC and short-term cycle data trained on paired UHPC and 
long-term cycling results. 
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UHPC and ML: A Case Study

A recent study performed by NOVONIX and SandboxAQ demonstrated the potential value of UHPC for 
ML cell cycle life predictions. The goal was to develop a model that was generalizable across various 
degradation signatures based on approximately 1 month of UHPC testing.

Cycle life curves from standard R&D systems over nearly two years of testing. Three cell types were tested at various temperatures 
and cycling voltages leading to varied degradation signatures. This controlled data set generation strategy was used as a baseline to 
develop UHPC-resolved features for ML Models

Representative UHPC differential capacity curve evolution over 50 cycles for the three cell types considered. Each tuple (cell type, 
temperature, and voltage) | underwent both long-term and UHPC testing. The UHPC data was then used for predicting cycle life to 
target capacity retention.

Figure 4: Cycle life trajectories for three cell types tested at various temperatures and voltages (top). UHPC 
discharge differential capacity profiles for each cell type at a single temperature and voltage range (bottom).
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Cylindrical cells from three manufacturers 
were tested using various voltage ranges and 
temperatures. All cells contained high-Ni positive 
electrodes, two types contained silicon-graphite 
blend negative electrodes, and one cell type 
contained a graphite-only negative electrode. 

Testing conditions were selected to cover specific 
degradation mechanisms based on the known cell 
compositions:

•	Cells with Si-containing negative electrodes were 
tested to full DOD and ~70% DOD to isolate Si-
related degradation.

•	All cell types were tested to 4.06 V and 4.2 V to 
isolate degradation due to highly delithiated high-Ni 
positive electrode materials.

•	Cells were tested at 25°C, 40°C, and 60°C to 
account for degradation temperature dependence. 

Cells were cycled in triplicates for each test condition 
(cell type, temperature, voltage range); on a NOVONIX 
UHPC system at C/10-C/10 constant current cycling 
for approximately 4 weeks, and on a common R&D-
spec system for up to 2500 cycles (~2 years) at 
C/3-C/3 (CCCV charge to C/20). 

The capacity retention of long-term cycling data was 
used as the target metric for ML predictions. Various 
capacity retention thresholds were considered, for 
example 90%, 85%, and 80%.  To construct features 
that capture cell degradation, residuals of differential 
capacity (dQ/dV) curves between two cycles were 
computed from the paired UHPC data. Figure 5 shows 
that using merely 6 UHPC cycles, the number of 
cycles to 85% capacity retention was predicted to 
be within 46 cycles for cell types not used in model 
training. These results are a dramatic improvement 
over traditional methods used in the literature, such 
as early discharge capacity trends and changes in low 
resolution voltage features.6-8

Figure 5: Machine learning 
feature engineering 
approach. Discharge 
differential capacity (dQ/dV) 
curve residuals between two 
cycles are used to construct 
electrochemically meaningful 
features (left). Model cycle 
life predictions using 45 
UHPC cycles (top right) and 6 
UHPC cycles (bottom right).UHPC-resolved residuals between two 

discharge differential capacity curves provide 
the input to construct electrochemically 
meaningful features for ML models.

Cycle life predictions on a cell type left out 
from model training. Three separate models 
are shown, each trained on two of the three 
cell types. UHPC-resolved features enable 
generalizable cycle life predictions.
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Ultra-High Generalization
How well can UHPC-derived features generalize to 
arbitrary data sets? The same features described 
above, developed on a small, curated data set were 
directly applied to a data set of over 4000 cells 
composed of various chemistries, including both Ni-
based and LFP positive electrodes, and graphite and 
silicon-containing negative electrodes, from a variety 
of vendors. Each testing condition contained UHPC/
long-term paired cells. The same ML pipeline described 
above was applied to this data set, with features 
constructed from the residual UHPC differential 
capacity curves. 

By directly applying the ML feature generation 
approach developed on a small, curated data set 
to a data set 100 times larger, with merely 25 UHPC 
cycles as input, the number of cycles to 85% capacity 
retention was predicted to within 108 cycles.

The success of this method to generalize arbitrary 
data sets is due to how electrochemical processes 
that lead to cell degradation over a long-time scale 
can be encoded in early-life features with high-fidelity 
data. The precision and accuracy of UHPC makes this 
ML approach possible.

Although this methodology shows great promise 
for generalizable accurate lifetime prediction, some 
limitations exist or were not investigated in this case-
study. For example, the data shown in this study was all 
obtained from “fresh” cells (i.e. no previous testing after 
formation). Cells with varying or unknown age or history 
could not be used with the same ML model, since 
the model was trained with cells of a specific history. 
Typically these types of limitations exist in ML models: 
previously unseen conditions will perform poorly. 
Other causes of performance limitations and outliers, 
including those in this study, may occur due to data 
sets with few dQ/dV features such as LFP or high-silicon 
containing cells, narrow test conditions in the training 
set, and poor training data (perhaps due to poor quality 
cells, poor temperature control in cycle aging, etc.).

There also exist methods to improve these models, 
such as more robust training sets with broader test 
conditions, more cell chemistries, or by generating 
more electrochemical or physics-informed features 
to train in the models such as impedance via Direct 
Current Internal Resistance (DCIR) or Electrochemical 
Impedance Spectroscopy (EIS), as well as UHPC cycle 
metrics such as coulombic efficiency, charge-endpoint 
capacity slippage, and capacity fade.

UHPC differential capacity curves from 
over 2000 cells from various vendors. Cell 
differences include electrode chemistries 
and morphologies, form factors, and 
electrolyte compositions.

Cycle life predictions using UHPC-resolved features from differential capacity residuals. 
10 % of the data was held out from model training to test predictions. These results 
demonstrate the utility of combining UHPC with ML.

Figure 6: UHPC discharge differential capacity (dQ/dV) curves for over 2000 cells from various vendors (left). Cycle life predictions 
for a model trained using features from differential capacity residuals (right).
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ReferencesThe Future of Battery Testing

The results shown in this article have important implications on all 
aspects of battery development and commercialization, spanning 
material evaluation to warranty estimation. Utilizing UHPC channels 
to complement a suite of standard cyclers can significantly 
impact decisions and progress using short-term, high-throughput 
precision tests and predictive analytics. New measurement 
techniques and equipment in combination with advancements 
in ML and AI have significant implications for the battery lab of 
the future. Paired with proper data aggregation, labeling, and 
organization, investments in R&D will go further and faster. This 
is precisely why NOVONIX has focused on commercializing this 
technology with top-of-the-line equipment to offer higher fidelity 
learning for resource-limited teams. NOVONIX offers UHPC testing 
equipment capable of as low as nA resolution up to 20A-capable 
channel modules and chambers. 

Contact bts-sales@novonixgroup.com 
for more information
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