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Pushing the Limits of Free
Energy Calculations in
Antibody Design

1BJ1 Fab Benchmark for Workflow Validation

1BJ1 Full System

The 1BJ1 Fab-antigen complex was selected as a

representative Ab-Ag system based on its well-

e The rapid evolution and structural diversity of antibody “5%; VEGFA characterized structure and canonical binding interface.

variable regions create profound challenges for accurate (2 ghaing) ® A benchmark dataset of 23 mutation combinations,

structure prediction and binding affinity estimation. including single- and multi-point variants relative to the
e Capturing the flexibility and conformational heterogeneity of wild-type, was generated for validation.

CDR loops remains a major obstacle for current Al-based , ® Antigen truncation strategies (20, 50, full residues;

modeling approaches. o Heavy chain Sulfate continuous polymers vs restrained fragments) were
e Traditional free energy perturbation methods struggle to gk tested, and their effects on convergence and accuracy

converge when applied to the large, dynamic configurational were evaluated.

spaces characteristic of antibody-antigen systems. 1BJ1 Truncated System e Crystal and Al-generated models were refined through
e To address these gaps, we introduce AQFEP, a workflow that Light chain , ,——-*_’;%-:. e side-chain repacking and MD simulations, with unstable

combines Al-driven structure prediction, deep learning- L R\ VEGFA (20 AA) poses filtered prior to AQFEP setup.

guided side-chain refinement, and enhanced alchemical , “( e Absolute binding affinities were predicted using AQFEP

sampling. with enhanced sampling, and triplicate runs confirmed
e This integrated strategy aims to enable robust affinity reproducibility and consistency across models.

predictions and accelerate computational antibody design.

Optimizing Biologics FEP
from Structure to Affinity

Deep Learning Boosts Accuracy for
Wild-Type and Al Models

Deep learning—based side-chain refinement (DL

Energy Spearman .
Starting Minimized Repacked Antibody |Mutation Engine| correlation, p SCR) outperformed cofoldlng-only models,
A 1| Xeray N v FAB DL SCR 0.67 achieving Spearman correlations up to 0.67.
2| AQc N v FV DL SCR 0.58 ® Repacking significantly improved prediction
3|  AQC N v FAB DL SCR 0.44 accuracy; non-repacked structures showed
- 4| xeray N N FAB DL SCR 0.43 lower correlations.
(mre) Dynamics 5| aqc N y v AQC 038 e Energy minimization alone without repacking
6| aQc v v Fv AQC 0.31 led to degraded performance
_C Protein Languags 7|  aac N N FV AQC 0.26 (P.=.0-16 to —0.34). |
8| Aac v N FV AQC 016 e Triplicate AQFEP runs achieved >90%
, . . o| aqc v N Fy DL SCR 015 convergence, confirming differences arose from
® Physics-based modeling generates complexes via ol roc y y N - o structure preparation.

mutagenesis, minimization, and local refinement.

Abbreviations:

e Al-based folding predicts antibody-antigen complexes AQC: Al-based Cofolding Algorithm, DL SCR: Deep Learning Side-Chain Refinement; Fab: Fragment antigen-
binding region; FV: Variable region fragment of antibody; Y: Yes; N: No

to expand structural diversity. HH101Y H72V TH74Y TH28D NH31H HH101Y SH105T

® Deep learning-guided side-chain refinement performs A. = Defaults _ e Diraulis e - m=m Defaults

mutagenesis and repacking to optimize binding site

20

[ Full Repacking

20

= [ Full Repacking

[0 Full Repacking

N
(=]

complementarity. .
e MD simulations assess stability and filter out unstable g g+ S,
. ] ] Q
candidates. S10 = S
e AQFEP employs enhanced alchemical sampling with - = 10
additional parameters to improve phase space overlap 5 5 .
and ensure robust absolute affinity predictions. q q
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+ A. Contact surface area comparison between default and deep learning-repacked structures for three of the 23 1BJ1 variants. Deep learning side-
S5 chain refinement increases surface area and improves binding.
B. Enrichment plots across WT and 23 1BJ1 variants after deep learning side-chain refinement for both X-ray and cofolded starting structures.

Strongest recovery of experimental actives is observed when X-ray structures are used as the starting point.

Conclusions and Future Directions

® A scalable workflow combining structure generation, deep learning side-chain refinement, and AQFEP enables robust
absolute affinity prediction for antibody-antigen systems.

e Deep learning refinement expanded binding site surface area and improved predictive accuracy across
crystallographic and Al-predicted structures.

e Validation on the 1BJ1 system (23 variants) demonstrated strong reproducibility (>90% convergence) and superior
recovery of experimental actives.

® This approach accelerates computational antibody screening, reducing reliance on animal-based affinity maturation.

e Future work will integrate protein language models to guide sequence design and extend predictive screening across
broader antibody libraries.

decoupling ligand in the decoupling ligand in the complex
solvent (from water) (from protein and water) ligand
restrained to be near the protein

e AQFEP accelerates absolute binding free energy
prediction by using a double-decoupling alchemical
protocol with optimized short simulation times for
high-throughput screening.

e Additional alchemical sampling and careful control of
lambda windows improve phase space overlap while
maintaining computational efficiency.

e The method leverages the quality of input poses and
convergence checks via MBAR to deliver robust affinity
estimates significantly faster than traditional AFEP
approaches.
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