
From Cofolding to FEP: Unveiling the 
Path to Absolute Antibody Affinities

Pushing the Limits of Free 
Energy Calculations in 

Antibody Design
● The rapid evolution and structural diversity of antibody

variable regions create profound challenges for accurate
structure prediction and binding affinity estimation.

● Capturing the flexibility and conformational heterogeneity of
CDR loops remains a major obstacle for current AI-based
modeling approaches.

● Traditional free energy perturbation methods struggle to
converge when applied to the large, dynamic configurational
spaces characteristic of antibody-antigen systems.

● To address these gaps, we introduce AQFEP, a workflow that
combines AI-driven structure prediction, deep learning-
guided side-chain refinement, and enhanced alchemical
sampling.

● This integrated strategy aims to enable robust affinity
predictions and accelerate computational antibody design.

Optimizing Biologics FEP 
from Structure to Affinity

● Physics-based modeling generates complexes via
mutagenesis, minimization, and local refinement.

● AI-based folding predicts antibody-antigen complexes
to expand structural diversity.

● Deep learning-guided side-chain refinement performs
mutagenesis and repacking to optimize binding site
complementarity.

● MD simulations assess stability and filter out unstable
candidates.

● AQFEP employs enhanced alchemical sampling with
additional parameters to improve phase space overlap
and ensure robust absolute affinity predictions.

1BJ1 Fab Benchmark for Workflow Validation
● The 1BJ1 Fab-antigen complex was selected as a

representative Ab-Ag system based on its well-
characterized structure and canonical binding interface.

● A benchmark dataset of 23 mutation combinations,
including single- and multi-point variants relative to the
wild-type, was generated for validation.

● Antigen truncation strategies (20, 50, full residues;
continuous polymers vs restrained fragments) were
tested, and their effects on convergence and accuracy
were evaluated.

● Crystal and AI-generated models were refined through
side-chain repacking and MD simulations, with unstable
poses filtered prior to AQFEP setup.

● Absolute binding affinities were predicted using AQFEP
with enhanced sampling, and triplicate runs confirmed
reproducibility and consistency across models.
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BETP cAMP EC50 = 5500–18000 
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AQFEP for Ab-Ag 
Absolute Binding Affinity

● AQFEP accelerates absolute binding free energy
prediction by using a double-decoupling alchemical
protocol with optimized short simulation times for
high-throughput screening.

● Additional alchemical sampling and careful control of
lambda windows improve phase space overlap while
maintaining computational efficiency.

● The method leverages the quality of input poses and
convergence checks via MBAR to deliver robust affinity
estimates significantly faster than traditional AFEP
approaches.

Deep Learning Boosts Accuracy for 
Wild-Type and AI Models

Starting
Energy 

Minimized Repacked Antibody Mutation Engine
Spearman 

correlation, ρ

1 X-ray N Y FAB DL SCR 0.67

2 AQC N Y FV DL SCR 0.58

3 AQC N Y FAB DL SCR 0.44

4 X-ray N N FAB DL SCR 0.43

5 AQC N Y FV AQC 0.38

6 AQC Y Y FV AQC 0.31

7 AQC N N FV AQC 0.26

8 AQC Y N FV AQC 0.16

9 AQC Y N FV DL SCR 0.15

10 AQC Y Y FV DL SCR -0.34

● Deep learning–based side-chain refinement (DL
SCR) outperformed cofolding-only models,
achieving Spearman correlations up to 0.67.

● Repacking significantly improved prediction
accuracy; non-repacked structures showed
lower correlations.

● Energy minimization alone without repacking
led to degraded performance
(𝞺𝞺 = 0.16 to – 0.34).

● Triplicate AQFEP runs achieved >90%
convergence, confirming differences arose from
structure preparation.

● A. Contact surface area comparison between default and deep learning-repacked structures for three of the 23 1BJ1 variants. Deep learning side-
chain refinement increases surface area and improves binding.

B. Enrichment plots across WT and 23 1BJ1 variants after deep learning side-chain refinement for both X-ray and cofolded starting structures.
Strongest recovery of experimental actives is observed when X-ray structures are used as the starting point.

A.

DL SCR mutations from cofolded starting point Mutated cofolded starting point
B.

Abbreviations:
AQC: AI-based Cofolding Algorithm, DL SCR: Deep Learning Side-Chain Refinement; Fab: Fragment antigen-
binding region;  FV: Variable region fragment of antibody; Y: Yes; N: No

DL SCR mutations from crystallographic starting point

Conclusions and Future Directions
● A scalable workflow combining structure generation, deep learning side-chain refinement, and AQFEP enables robust 

absolute affinity prediction for antibody-antigen systems.
● Deep learning refinement expanded binding site surface area and improved predictive accuracy across 

crystallographic and AI-predicted structures.
● Validation on the 1BJ1 system (23 variants) demonstrated strong reproducibility (>90% convergence) and superior 

recovery of experimental actives.
● This approach accelerates computational antibody screening, reducing reliance on animal-based affinity maturation.
● Future work will integrate protein language models to guide sequence design and extend predictive screening across 

broader antibody libraries.
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